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Abstract— The brain is a massively interconnected network 
of specialized circuits.  Even primary sensory areas, once 
thought to support relatively simple, feed-forward processing, 
are now known to be parts of complex feedback circuits.  All 
brain functions depend on millisecond timescale interactions 
across these brain networks.  Current approaches cannot 
measure or manipulate such large-scale interactions.  Here we 
demonstrate that polymer-based, penetrating, micro-electrode 
arrays can provide high quality neural recordings from awake, 
behaving animals over periods of months.  Our results indicate 
that polymer electrodes are a viable substrate for the 
development of systems that can record from thousands of 
channels across months to years. This is our first step towards 
developing a 1000+ electrode system capable of providing high-
quality, long-term neural recordings.

I. INTRODUCTION

The brain is a massively interconnected network of 
specialized circuits.  Even primary sensory areas, once 
thought to support relatively simple, feed-forward processing 
are now known to be parts of complex feedback networks.  
Current approaches for in vivo electrophysiological 
recordings are limited in both the number of recording 
channels and their distribution across regions; therefore, they
cannot hope to measure or manipulate the sheer volume and 
complexity of these neural circuits.  In order to identify and 
control such large-scale interactions, thousands of recording 
channels are required.

To develop a system that can effectively record from 
thousands of channels, several technological challenges for 
the electrode arrays must be addressed.  First, the electrode 
arrays must be capable of penetrating brain tissue to gain 
access to more components of the feedback circuits.  Second, 
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the arrays must have both a high number and a high-density 
of electrodes.  This will enable large-scale recordings with 
small spatial resolutions.  Third, the arrays must have a very 
small footprint.  To record from thousands of channels it is 
highly probably in order to minimize the overall damage 
caused by the arrays and to ensure minimal disruption of the 
neural circuitry under study.  Finally, the electrode arrays 
must be able to record for long periods of time: months to 
years.

Current approaches for developing these arrays with 
thousands of channels can generally be divided into two 
categories: micro-wire arrays and micro-fabricated arrays [1-
16].  While very suitable for deep-brain penetration, micro-
wire arrays have drawbacks that limit their utility for 
expansion into a 1000+ channel recording system.  First, the 
electrodes are often limited to a single insertion plane.  This 
limits their ability to target the complex and variable neural 
architectures found in many brain areas.  Second, only a 
limited number of electrodes are permissible to ensure a 
small device footprint is maintained.  In general, increasing 
the number of electrodes increases the number of wires, 
thereby increase the overall size of the array.  Further, these 
micro-wire arrays are often hand-made; the introduction of 
additional electrodes can drastically increase the fabrication 
time and cost, and in some cases is simply not practical.  This 
also limits the reproducibility of these arrays

Micro-fabricated electrode arrays are a more viable 
option for developing a 1000+ channel recording system [5-
16].  They utilize traditional micro-fabrication techniques that
allow for large numbers of electrodes, in a high-density, 
small-footprint array, to be fabricated on a single device, with 
no significant increase in fabrication cost or time.  This 
allows for high spatial resolution and minimal disruption of 
the neural circuitry during implantation.  These micro-
fabricated arrays have electrodes along the entire insertion 
length enabling recordings from different layers of neurons 
with a single array.  Further, micro-fabrication enables 
relatively easy integration of multiple, individually 
implantable, arrays into a single device.  This allows these 
micro-fabricated arrays to simultaneously measure and 
manipulate large regions of the brain.

Traditionally, these micro-fabricated electrode arrays 
have been fabricated out of either silicon [5-7] or polymers
[8-16], such as polyimide or parylene, since these materials 
are compatible with the MEMS-based fabrication processes 
needed to create the arrays.  Both silicon-based and polymer-
based arrays have been used for penetrating, multi-electrode, 
neural recordings [5-16].  However, when looking to develop 
an electrode array that can record from thousands of channels 
across months to years, the polymer-based arrays have 
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several advantages.  First, the mechanical properties of the 
polymer-based arrays are more closely matched to the neural 
tissue than the silicon-based arrays [17-20].  Thus, the 
silicon-based arrays are more likely to cause chronic injury of 
the neural tissue at the implantation site, especially over the 
long-term, due to continuous micro-motion of the tissue [17-
20].  Second, integration of flex cables/wires to the silicon 
arrays can be extremely difficult and complicated, especially 
for chronic, large-scale applications [21].  Also, the 
connection the point between the external wires and the 
silicon arrays is a common mechanical and/or electrical 
failure point.  With polymer arrays, though, the flex 
cables/wires are integrated into the device during fabrication; 
no additional, complex attachment of external wires is 
needed.

Given these advantages, we selected micro-fabricated,
polymer-based arrays as our substrate of choice as a starting 
point for our efforts to develop a 1000+ electrode system 
capable of year-long recording.  The first step towards this 
goal was to develop an expandable electrode array capable of 
providing high-quality, long-term neural recordings.

II.PENETRATING ELECTRODE ARRAY

A. Electrode Array Design

The penetrating, multi-electrode device is a 2-shank, 36-
electrode, polymer array (Figure 1).  The electrodes are 
divided evenly between the two shanks.  The shanks are both 
6 mm long and 100 μm wide; they are separated by 2 mm.  
Each electrode is 20 μm in diameter with a center-to-center 
spacing of 110 μm.  On each shank, the electrodes are 
arranged in a single-line on the outside edge of the device.  
The electrodes are placed off-center so they are located closer 
to the non-damaged tissue.  The electrode distribution was 
specially designed to record local field potentials.

Figure 1.  Top-down schematic view of the 2-shank, penetrating, multi-
electrode device (A).  The device utilizes a standard 36-pin Omnetics 
Connector (Omnetics Connector Co., Minneapolis, MN).  The middle 
image (B) shows an enlarged view of the implanted region of the device 
showing the two individual shanks.  The bottom image (C) shows an 
enlarged view of the tip of the bottom shank.  The six electrodes shown (in 
red) are located at the outside edge.  Although not shown, there are 18 
electrodes on each shank.

B. Electrode Array Fabrication

The devices are fabricated using interleaved layers of 
polyimide and metal [15-16]. A cross-section of the device is 
shown in Figure 2.  There are 4 layers of metal total: 1 layer 
of metal for the electrodes and 3 layers of metal for the 

conducting traces.  The electrodes are platinum.  Each layer 
of metal is separated by a layer of polyimide.  The total 
device thickness is 14 μm.

The devices are fabricated “upside” down; in other words, 
the electrodes are built first and the traces are added on top.  
Traditional fabrication utilizes a “right-side” up order, in 
which the electrodes are added on top of the traces.  The 
primary advantage of this “upside” down fabrication is that 
the electrodes are flush with the outer polyimide layers; this 
decreases the physical distance between electrodes and the 
neural tissue [16].  (“Right-side” up fabrication yields 
electrodes that are recessed from the outer polyimide layers.)

Figure 2.  Cross-section of the fabricated devices (not drawn to scale).  
Although shown with the electrodes on top, the devices are fabricated with 
the electrodes on the bottom to allow the electrodes to be flush with the 
outer polyimide layers.

C.Insertion Stiffeners

Specially-designed insertion stiffeners are also fabricated.  
Details on the design and fabrication of these stiffeners can 
be found in Ref. 22.  The polymer electrode arrays are 
temporarily attached to the stiffener using bio-dissolvable 
polyethylene-glycol (PEG) [22].  These insertion stiffeners 
are required as the flexibility of the polymer arrays results in 
buckling and folding of the arrays upon insertion, thereby 
preventing successful insertion.  The stiffener, on the other 
hand, easily penetrates the neural tissue. Once the stiffened 
array is inserted, the PEG dissolves allowing the stiffener to 
be extracted.  The polymer array thus regains its flexibility.  
In vitro tests have shown no loss of electrical functionality is 
caused by the PEG dissolution.  For this preliminary 
demonstration, the stiffeners were fabricated from a silicon 
substrate.  They were specifically designed for this electrode 
array; they are 50 μm thick with 2 shanks and an insertion 
depth of up to 6 mm (Figure 3).

D.In Vitro Electrical Characterization

Electrochemical impedance measurements were made on 
the electrodes with a Princeton Applied Research (PAR) 
potentiostat using vendor-supplied software.  All 
measurements were made in a three-electrode cell using a Pt 
counter electrode, an Ag/AgCl reference electrode, and 
phosphate-buffered saline (pH 7.4) as the electrolyte.  The 
impedance of the electrodes is approximately 950 kΩ at 1 
kHz.



Figure 3.  Image of the penetrating electrode array attached to the insertion 
stiffener.  The top image shows both shanks which have been attached 
simultaneously to a single insertion stiffener.  The bottom image shows an 
enlargement of the tip of one of the shanks.  The shank is attached on top of 
the insertion stiffener with PEG.  The six tip-most electrodes are visible.

III. IN VIVO EXPERIMENTS

A. Animal Surgery

All surgical procedures and animal care conform to 
guidelines set by the University of California, San Francisco, 
and the National Institutes of Health.  The devices were 
surgically implanted into the hippocampus of one wild-type 
and four transgenic ChAT-Cre Long Evans rats [23].  The 
first shank was targeted 3.7 mm posterior and 2.0 mm lateral 
of Bregma and the second shank was targeted at 2.29 mm 
posterior and 3.41 mm lateral of Bregma.  The insertion 
stiffener of the electrode array assembly was attached to a 
Kopf Model 2660 direct drive micropositioner and lowered 
into position.  The PEG was given 30 minutes to dissolve in 
saline before the stiffener was retracted, leaving the polymer 
array in the neural tissue.  The array was then secured to the 
skull surface using dental acrylic.

B. Electrophysiological Recordings

The arrays electrode distribution was designed to record 
local field potentials (LFPs) along the rostrocaudal axis of the 
hippocampal structure.  This allows for the measurement of 
the electroanatomy of the hippocampal cortical layers [24].  
Following implantation, electrophysiological data were 
collected using the NSpike Data Acquisition System (L.M. 
Frank, J. MacArthur, Harvard University, Cambridge, MA).  
Data were collected at 30 kHz and digitally filtered from 1 
Hz – 11 kHz before being saved to disk.

Data from the rats were collected for up to 3 months post-
implantation, after which the experiment was terminated.  In 
each animal, the electrode arrays continued to provide high-
quality LFP data for the entire duration of the experiment.  
An example of this can be seen in Figure 4, which shows raw 
data taken from eight consecutive channels recorded at three 
weeks and at three months following implantation.  The 
traces in the figure are centered on a sharp-wave ripple event, 
a characteristic electrophysiological signature of 
hippocampal activity.  In some cases, we were also able to 

obtain well-isolated single units, although we noted that there 
was some small variation from day to day that could be a 
result of electrode movement relative to the tissue.  
Nonetheless, the long duration of the recordings demonstrates 
the utility of these polymer-based electrode arrays.

Figure 4.  LFP signals recorded from one shank of a polymer electrode 
array three weeks (left) and three months (right) after implantation.  The 
traces show the measured signals from eight adjacent channels of one 
shank.  The signals are centered on a sharp-wave ripple event from the 
hippocampus, which includes a high frequency ripple oscillation that is 
most prominent on the 5th channel (front the top) on the right.

IV. CONCLUSION AND FUTURE WORK

Our results demonstrate that polymer-based electrode 
arrays can be successfully inserted into deep-brain structures 
and that they can provide high-quality recordings for long 
periods of time.  These results lay the groundwork for future 
studies that will optimize polymer electrode arrays for long-
term, stable, single-neuron recordings.

Towards our ultimate goal of developing a 1000+ 
electrode recording system, we are focusing on four
important areas.  

1. Smaller devices have the potential to yield more 
stable recordings, which would allow recordings 
from the same sets of neurons across many days.  
Micro-fabrication techniques will allow further 
miniaturization of these devices, while maintaining 
the high channel counts and increasing the electrode 
density.  We are therefore exploring devices that 
measure as small as 60 μm by 20 μm, with greater 
than 20 electrodes.

2. We are investigating new insertion tools that will 
allow easy implantation of many electrode arrays in 
various regions of the brain.  This will enable us to 
target the specialized circuitry and the complex and 
variable neural architectures found in many different 
areas of the brain.

3. We are continuing to test the electrode arrays, both in 
vitro and in vivo, to further quantify the long-term 
recording characteristics.  We are also carrying out 
longer-term recordings in which we are isolating 
large numbers of single neurons.  Although we have 
demonstrated high-quality recordings over a 3 month 



time period and other polymer-based electrode arrays 
have demonstrated multi-year use [25] it remains to 
be seen, however, whether the further miniaturization 
of these devices will limit the effective lifetime.

4. We are working on integrated probe-headstage 
assemblies that will eliminate the need for bulky 
connectors.  If the devices are directly coupled to 
chips that preamplify, multiplex, and digitize the 
signals, very high-density and high channel count 
recordings become possible.

5. We are working on a new data acquisition system 
capable of capturing data from 1000+ channels.  Our 
approach uses gigabit Ethernet to provide high 
bandwidth, low latency data transmissions and 
allows for real-time feedback on the basis of ongoing 
brain activity.

Together, these technology development efforts have the 
potential to yield tools that can be used to measure the 
activity of thousands of neurons in awake, behaving animals.  
Further, as previous polymer devices we have created have 
been approved for use in humans [25], this technology 
provides a path forward to large-scale recordings from the 
human brain.
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